
Practices to Define Software Measurements

Káthia Marçal de Oliveira

LAMIH CNRS UMR 8201
Université Polytechnique Hauts-de-France, Valenciennes, France
kathia.oliveira@uphf.fr

RESUME. Métriques, mesures, indicateurs, estimations, etc. Bien que nommés de différentes
manières et explorant différents angles, un fait est reconnu : les mesures de systèmes logiciels
sont essentielles pour évaluer leur qualité, favoriser leur amélioration et contrôler leur
production. Différentes méthodologies ont été définies (GQM, GQIM, PSM, etc.). Différentes
études pratiques ont été publiées. Cependant, la définition des nouvelles mesures semble
toujours une tâche non triviale. Dans cet article, nous présentons notre expérience sur la
définition des mesures avec un ensemble de pratiques simples qui abordent des questions clés
concernant différentes méthodologies. Ces pratiques ont été appliquées dans la définition de
mesures pour différents types de systèmes (des « legacy systems » aux applications IoT
modernes).
ABSTRACT. Metrics, measures, measurements, indicators, estimates and so on. Although named
in different ways and exploring different angles, one fact is recognized: measuring software
systems is essential for assessing their quality, promoting their improvement and controlling
their production. Different methodologies have been defined (GQM, GQIM, PSM, etc.).
Different studies in practice have been published. However, defining new measures still seems
a not trivial task. In this article, we present our experience on how to define measures with a
set of simple practices that address main issues of different methodologies. These practices
have been applied in the definition of measures for different types of systems (from legacy
systems to modern IoT applications).
Mots-clés : mesure logicielle, métriques, indicateurs de qualité.
KEYWORDS: software measurement, measures, metrics, quality indicators.

1. Introduction

Web systems, Ubiquitous computing, Internet of Things (IoT), Smart Cities, and
so on brought a significant diversity of software systems that support several of our
daily activities. To ensure the improvement and adoption of these applications, it is
essential to assess their quality. Measurements can help address some of the most
critical issues in software development and provide support for evaluating, improve,
and control the production of software systems (Briand et al. 2002). In this context,
several well-defined classical measures can be applied (e.g. complexity of the code,

77

size, coupling, defect density, reuse, etc.). However, these new kinds of applications
present specific particularities that need also to be measured to assure their quality.
We quote for instance, the need to evaluate context-awareness, a common feature of
personalized systems, IoT and ubiquitous software applications, that implies in the
perceived quality of the software system (Lee and Yun, 2012; Carvalho et al. 2017,
2018). Several other studies to evaluate the quality of different particularities of these
new kinds of systems can be found in literature, such as: privacy in ubiquitous systems
(Jafari et al., 2011), transparency interaction in smart homes (Wu and Fu, 2012), user
immersion degree in ubiquitous services (Lee and Yun, 2012), trust in adaptive
systems (Evers et al., 2010)), efficiency of data transfer in IoT applications (Paschou
et al., 2013). However, besides not being exhaustive, the defined measures are not
always described in a way that allows their use. Carvalho et al. (2017) showed that
more than 80% of measures found in a systematic review for ubiquitous applications
were not formally defined. We are, therefore, faced with defining or redefining
measures in order to evaluate these new kinds of systems.

Several works have been presented in the literature for the definition of measures,
improvement of process, and institutionalization of measurement programs in the
industry (see, for instance, an overview of these approaches in Tahir et al., 2016).
Nevertheless, defining new measures is always considered a complex activity. First
of all, we need experts for the definition and also for the interpretation of the results,
and they are not always available. Once we have experts, we are faced with the lack
of adequate tools to collect and evaluate data. Moreover, the definition of the
experimental protocols is also complex, there are not always professionals to proceed
the evaluations and the evaluation itself is usually expensive (Oliveira et al., 2012).
Due to these difficulties, it is common to give up measuring and miss good
opportunities to perform simple but significant measurement studies.

The idea of this article was to take a step back and organize a set of practices we
have applied to deal with those difficulties when defining measures (around of 90) for
different software systems (ubiquitous systems (Carvalho et al., 2018), legacy system
(Ramos et al. 2004), interactive systems (Assila et al., 2016; Gabillon et al., 2013),
web systems (Lima et al., 2009)) and software process (Monteiro and Oliveira, 2010).
These practices came from the application of different proposals from literature and
became a roadmap we have followed to investigate and define measurements. We put
together in this paper what worked for us showing different real examples so that it
can be applied directly in new definitions of measurement.

We start this paper (section 2) by briefly presenting some concepts about
measurements used as a basis for the set of practices described in section 3. Section
4 presents our conclusions.

2. Background

2.1. Basic Concepts

Some basic concepts are important to clarify why working on the definition of
measures. First of all, measurement can be defined as follows: (i) The process by

78

INFORSID 2020

which numbers or symbols are assigned to attributes of entities in the real world in
such a way as to describe them according to clearly defined rules (Fenton and
Pfleeger, 1997); and (ii) a set of operations having the object of determining the value
of a measure ISO/IEC 15939 (2007).

In the first definition, an entity is an object (such as a person, a model, or a room)
or an event (such as the testing phase of a software project). ISO/IEC 15939 (2007)
summarizes that an entity is an object (a process, product, project, or resource) that is
characterized by measuring its attributes. An attribute is a property of an entity (such
as the color of a room, or the elapsed time of the test phase). The attributes are often
defined using numbers and symbols (such as, a number of hours or the different labels
for colors). Thus, we measure the attributes of entities by using specific measurement
methods. The entity to be measured is the start point for a measurement definition.
ISO/IEC 15939 (2007) organizes all these concepts associated with the measurement
process defining some important concepts. It defends that a measurement process is
driven by information needs (also named in literature as measurement goals), which
are “insights necessary to manage objectives, goals risks and problems”. To address
the information needs, one can define:
- Base measures (named quality measure element in SQuaRE (ISO/IEC 25000,

2014)), that are independent measures defined in terms of an attribute (of an
entity) and the method for quantifying it.

- Derived measures (named quality measure in SQuaRE (ISO/IEC 25000)), 2014)
that are measures defined as a function of two or more values of base measures.

- Indicators - a measure defined using derived and base measures, and that is the
basis for analysis and decision-making based on a model that combine one or
more measures with associated decision criteria (thresholds or targets used to
determine the need for action or further investigation, or to describe the level of
confidence in a given result).

The methods used in the measures can be of two types: subjective, when the
quantification of an attribute involves human judgment; or, objective, when the
quantification is based on numerical rules such as counting, performed manually, or
with automated tools. Finally, one of the following scales is associated with the
measure (ISO/IEC 9126, 2001): nominal, ordinal, interval, or ratio. Measures using
nominal or ordinal scales produce qualitative data, and measures using interval and
ratio scales produce quantitative data (ISO/IEC 25000, 2014).

The literature is rich in measures for software products (models, code, software
design, etc.), process and project. We can also find several systematic literature
reviews (e.g. Nuñez-Varela et al. (2017), Carvalho et al. (2017), Hall et al., (2011),
Bellini et al. (2008), Gómez et al (2008)) summarizing measures proposed in the last
years.

2.2. Software Measurement Approaches

Several approaches have been proposed for the definition of measures. Some of
the best known are: Goal-Question-Metric (GQM) (Basili et al., 1994; Solingen and
Berghout, 1999); the Goal-Question-Indicator-Metric (Park et al., 1996), Practical

79

INFORSID 2020

Software Measurement (PSM)1 (McGarry et al., 2002), the ISO/IEC 15939 (2007))
and the GQM/Metric Definition Approach (GQM/MDEA) (Briand et al., 2002). All
these approaches propose a set of steps in order to define software measurement for a
product, process or project (see Figure 1). These approaches are differentiated by the
number of steps presented and the detail given to carry out these steps. Some of them
include some steps for the planning and integration of the measurement definition
activities in the enterprise (see the first step of GQM, ISO/IEC 15939 and PSM in
Figure 1). A common aspect in all these approaches is that they are goal-oriented, as
introduced by GQM. Indeed, in a systematic literature review about software
measurement, Tahir et al. (2016) concluded that the majorities of measurement
planning models (83%) and measurements tools (90%) are extensions or improvement
of GQM thanks to the goal-oriented measurement focus.

All these approaches are useful while defining measures and can be chosen
without distinction, even if some (GQM, PSM and ISO/IEC 15939) are more used for
measurement of software process and other (GQM, GQIM and GQM/MDEA) for
software product (code, models, documentation etc.). By analyzing the steps
particularly related to the software measurement definition (not considering the
organization steps and the data collection), we note that three main issues are
addressed in these approaches (Figure 3):

i. the measurement goal definition (steps highlighted in green - § symbol in
Figure 2), that focus on explicitly state the need for the measurement by
formalizing the goal of the measurement in a clear and structured way;

ii. the measure definition itself (steps highlighted in blue - ¨ symbol in Figure
2), where, entities are identified and attributes are formalized via generic
properties that characterize their measure (see previous section); and,

iii. the measure evaluation (steps highlighted in red -ª symbol in Figure 2), that
shows how to validate the measures defined and how to apply them for
refinement and improvement of their definitions.

From our experience, regardless of which of the approaches from Figure 3 we
follow, these issues are the most time-consuming and about which we have to
overcome the main difficulties in the measurement definition (Dupuy-Chessa et al.,
2014; Oliveira et al., 2012). The issue (i) should be deeply investigated by the team
responsible for the measurements since it will guide the whole measurement program,
being clear described, what is not always easy if we do not follow some standards
template. Regarding measurement definition (issue (ii)), several difficulties are
recognized: the need of an expert in the definition and interpretation of the measure,
the insufficiency of adequate assessment tools, the definition and use of threshold and
the large number of measures in literature. Finally, for the measurement evaluation
(issue (iii)), validation procedures are not usual and experimental protocols are
generally complex and difficult to define. However, we have to work with these
difficulties and try to define as better as possible measurements that can support the
quality evaluation of the software systems.

1 New version of PSM v4.0b1 is available at http://www.psmsc.com/PSMGuide.asp

80

INFORSID 2020

Figure 1. Steps of different softw
are m

easurem
ent approaches

81

IN
FO

R
SID

 2020

Figure 2. Main issues of software measurement approaches

3. Practices for Software Measurement Definition

Having been worked with measure definition for different proposes (e.g.
ubiquitous systems (Carvalho et al., 2018), legacy system (Ramos et al. 2004),
interactive systems (Assila et al., 2016; Gabillon et al., 2013), web systems (Lima et
al., 2009) and software process improvement (Monteiro and Oliveira, 2010)), we have
applied different practices that helped us to deal with the difficulties previously
mentioned. These practices are presented in this section according to the main issues
identified for software measurement presented in Figure 2.

3.1. Practices for Measurement Goal Definition

All approaches for software measurement definition starts by clearly establishing
the measurement goal. In fact, measurement is a timing consuming and costly task.
Therefore, the real need for the measurement should be identified since the beginning
and should be revisited throughout the measurement definition to keep aligned with
that goal. To that end, we should take into account the corporate objectives (Briand et
al., 2007), identify the business objectives that guide the organization's efforts and
identify what one would like to know, in order to understand, evaluate, predict and
improve activities related to the achievement of its objectives (Park et al., 1996). A
good practice is brainstorming with the team interested in the measurement trying to
answer open questions, such as: What are the strategic goals of the organization/
project?, What are the major concerns (problems)?, What do we want to
know/learn/improve?, How can we reach improvement goals?. After that, the
measurement goal should be clearly written. We used as practice defining the goal
following the structure defined in (Basili et al. 1994, Solingen and Berghout, 1999):

Analyze the object under measurement
For the purpose of understanding, evaluation, prediction, controlling, improvement
With respect to the quality focus of the object that the measurement focuses on
From the viewpoint of the people that measure the object
In the context of the environment in which measurement takes place.

Measure
evaluation

Measure
definition

Measurement
goal definition

82

INFORSID 2020

Although it is a simple structure, each one of the lines of this definition is really
important. From the beginning, it is essential to clearly define what is the object (the
entity to be measured). As defined in section 2.1, the entity is the basis for the
measurement process since we will measure the attributes of this entity.

For the purpose of the measurement, we should keep on mind what we want. It is
very common to measure to obtain an accurate characterization or evaluation of the
object for further analysis. Prediction, controlling, and improvement may require
specific analysis models, comparisons among measurements, or continua data
collection for some time slot.

Another important decision at this moment is the quality focus for the
measurement definition. It is usually recommended to be decided according to the
main interest of the organization by interviewing the sponsors. When in a research
project, the choice regards the main interest of the project (e.g., usability,
performance, etc.). In both cases, we usually use as practice look for a list of pertinent
quality characteristic to support this decision. To that end, ISO/IEC 25010 (2011) can
be used since it presents a set of quality characteristics (13) divided into sub-
characteristics (42) related to outcomes of interaction with a system (the quality in use
model) and related to the system/software product quality properties (the product
quality model). Since this standard can be applied to any kind of software system, it
is a rich source of quality focus when the entity to be evaluated is a product. However,
a good practice is also look in the literature searching quality characteristics specific
for the object been measured. This is particularly important when dealing with new
kind of software systems like ubiquitous applications, IoT applications (e.g., smart
cities), conversational agents, etc. Systematic mappings studies (Petersen et al., 2015)
proven to be quite useful in this case. It may reveal different quality focus not
presented in the standards, and that covers particularities of that kind of system. Our
study for ubiquitous systems (Carvalho et al., 2018) showed particular quality focus
regarding context-awareness, transparency, calmness, attention, and mobility.

Finally, it is important to define the point of view we are interested in precisely.
That means the people that will measure and will benefit from the measurements. This
will guide the definition of the measures to decide which attributes of the entity we
are interested in measure to the purpose defined.

Figure 3 presents different examples of measurement goal definitions. It is worth
mentioning some peculiarities of each of these definitions, as follows:
- in (a), the business goal that motivates the measurement was to evaluate an

existing legacy system, in a short time in order to support outsourcing companies
to establish the maintenance contracts to other companies. We aimed to have a
view about the documentation and code of the legacy system to have an idea of
the amount of work required.

- In (b), the interest was collecting data to define indicators for a service catalog of
an SLA (Service Level Agreement) about website accessibility in order to support
the definition of SLAs by the Brazilian Government while contracting companies
to develop and maintain their web sites;

83

INFORSID 2020

- In (c), the motivation was to evaluate quality characteristics that impact directly
on the human-computer interaction in mobile applications;

- In (d), the context of transport applications imposes that the user interface should
be as simple and complete as possible to support decision-making in real-time;

- In (e), the business goal behind this measure is to control the software
development to monitor the time and cost to be aligned with the established
contracts for a service in a software house.

Analyze the system documentation
for the purpose of assessing
with respect to completeness and consistency
from the viewpoints of analysts and
programmers
in the context of the outsourced maintainer.

Analyze the system source code
for the purpose of assessing
with respect to the complexity to understand and
modify it
from the viewpoints of analysts and
programmers
in the context of the outsourced maintainer.

(a) Measuring legacy systems (Ramos et al., 2004)
Analyze content on websites
for the purpose of evaluation
with respect to accessibility,
from the viewpoint of the user with visual
disabilities
in the context of governmental services

Analyze ubiquitous systems
for the purpose of evaluating
with respect to context-awareness, mobility,
transparency, attention and calmness
from the viewpoint of user and developer
in the context of mobile applications

(b) Measuring web applications
(Lima et al., 2009)

(c) Measuring ubiquitous applications
(Carvalho et al., 2018)

Analyze user interface
for the purpose of improving
with respect to information density
from the viewpoint of developer
in the context of transport application

Analyze project scope (time and cost)
for the purpose of controlling
with respect to performance
from the viewpoint of managers
in the context of software houses.

(d) Measuring interactive systems
(adapted from (Assila et al.2016))

(e) Measuring software process (adapted
from (Monteiro and Oliveira 2011))

Figure 3. Examples of measurement goal definition

3.2. Practices for Measure Definition

The measurement definition is the core of any measurement approach. First of all,
it is important to be aware that there are a lot of measures already defined and being
used in the literature. Consequently, a practice that we have applied is to look for
measures in the literature considering the quality focus we have defined in the
measurement goal before starting any activity for defining measures. Again,
systematic mapping study is quite adequate. However, although we can find measures
in literature, they are not always described and formalized in a way that we can reuse
it. For instance, in the systematic mapping for ubiquitous application we have done
(Carvalho et al., 2018), we found 218 measures, but analyzing them against the
formalization of measures purposed by SQuaRE (ISO/IEC 25000, 2014) and

84

INFORSID 2020

(ISO/IEC 15939, 2007) we note that only a small part (39) was well defined presenting
measurement functions and quality measurement elements for a definition.
Nevertheless, even in the case we do not have the complete description of the measure,
to have a list or ideas of measures for the quality focus at hand is very helpful.

By looking the literature, we can also find several measures to measure the same
quality characteristics (for instance, we found several measures for code size and
complexity of the code while evaluating legacy systems (measurement goal (a) in
Figure 4). Therefore, we can either choosing one to work with or applying all of them
to have different perspectives on the quality focus being measured.

To define the new measures, two main points should be considered. The first one
is to have the entity to be measured as the main element. That means we should
consider the entity, explore and define all attributes this entity has, and consider other
entities (and also their attributes) that have some impact/relation on the entity in the
study. All this information will be useful while defining the measure. The second point
is to consider experts in the kind of object being measured. It is worth to choose
different experts and perform individual and group interviews with them. Since group
interviews are not easy to organize (problem of schedule and availability), it is good
to have some support to integrate opinions and guide the measure definition. To that
end, a good practice we have applied is to use abstraction sheets (Solingen and
Berghout, 1999). This document summarizes the key issues about the measurement
goal into four parts as follows:
- Quality Focus - in which experts should choose or define possible measures for

the defined quality focus. At this moment, the list of measures we collected from
the literature (even with only names of the measure and not a complete
formalization) is really useful. They work like insights for the experts, promote
discussion and stimulate the definition of measures;

- Baseline Hypotheses - in which experts use their experiences (from other
projects) to set a possible interpretation value that means what they expect to find
as acceptable values. We consider that at least one baseline hypotheses for each
measure should be defined;

- Variation Factors, in which experts identify potential factors that can impact the
suggested possible measures; and,

- Impact of Variation Factor, in which experts should answer how the various
factors could impact the measures and what kind of dependencies exists between
the measures and the factors.

Figure 5 presents an abstraction sheet regarding the measurement goal (c)
presented in Figure 4.

With the abstract sheet filled in, we can (with the experts, if possible) define the
measures starting from the measures listed in the quality focus quadrant, and then
trying to define a measure for each variation factor that impact those measures. The
definition of those measures should be based on the attributes of the entities related to
them. From or experience, abstract sheets are effective in defining measures, even if
we have only one expert or a study group of researchers interested on the entity being
evaluated since it helps to brainstorm and to structure what can be measured.

85

INFORSID 2020

Figure 4. Example of abstraction sheet for ubiquitous applications evaluation
(adapted from (Carvalho et al., 2018))

When defining a measure, we can conclude that to better evaluate the quality focus
in study is necessary the combination of two measures in the same view. To that end,
indicators as defined by ISO/IEC 15939 (2007) can be applied. For instance, for
evaluating the information density of interactive systems, we concluded that it was
important to have measures not only about the user interface itself but also about the
users’ opinion concerning their perception of the density of information while
executing some tasks (Assila et al., 2016). Indicators can also give some prevision for
the object been evaluated. For instance, to control the software project (measurement
goal (e) in Figure 4), we crossed measures of cost and time in control charts that
support the analysis of stability over time.

To support the measure definition, a good practice is to follow a template for the
measurement description. ISO/IEC 25000 series and ISO/IEC 15939 (2007) provide
a list of elements we should consider while describing the measures. In general, at
least the following information must be provided:
- Name – defined for convenience and that express the main meaning of the

measurement;
- Description of the measure – the information described by the measure or

gathered for the measures. This description must be cleared enough to make an
easy understanding of the measured goal. To that end, we can use a sentence
and/or a question to be answered by the application of the measure;

- Measurement function – ISO/IEC 25022 (2012) defines as an equation showing
how the quality measure elements (base measures) are combined to produce the
quality measure (derived measure). ISO/IEC15939 (2007) states that it can also
be an algorithm or calculation performed to combine two or more base measures.

- Interpretation – a description to support the interpretation of the result for
decision making. We propose two general practices. The first one is to normalize
the value of the measure within 0.0 to 1.0 and that consider the interpretation as
the closer to 1.0 is better (as suggested by in ISO/IEC 25022 (2012)) or close to

86

INFORSID 2020

0.0 is better. The second practice is to apply the baselines defined in the
abstraction sheets to define the initial values for thresholds. Those values can be
revised after empirical evaluations (see next section).

- evaluation method – “procedure describing actions to be performed by the
evaluator in order to obtain results for the specified measurement applied to the
specified product components or on the product as a whole” (ISO/IEC 25000,
2007). In practice, we used three kinds of evaluation methods, as follows:

- Questionnaires – classical way to collect data for the subjective measure from
users’ opinion. In this case, the Likert scale is commonly used. We have also
used a continuous scale named VAS (Visual Analogue Scale) that allows the
application of a wider range of statistical methods to the measurements.

- Third-party observation – a third person that observe users interacting with
the system during an evaluation session. The third person takes notes for
further analysis. Forms with the data to be collected during the observation
should be provided. The evaluation sessions can be face-to-face or remote.

- Interaction log – use of automated data collection tools (usually specifically
implemented for the system to be evaluated). It collects a trace of the
execution of the system with specific data previously defined. The data to be
collected is defined based on the defined measures.

Moreover, specific functions can be coded to collect measures from code (e.g.:
complexity of the code). Several plug-ins and open-source tools are also available to
this purpose2.

Table 1 shows two examples of measure description. The first one was defined
based on the abstraction sheet presented in Figure 4. Several examples of indicators
description following ISO/IEC 15939 (2007) structure can be found in (Assila et al.,
2016; Monteiro and Oliveira, 2011).

3.3. Practices for Measure Evaluation

In order to guarantee the validity of a defined measure, we should assure its
theoretical correction and apply it in several applications. The ideal scenario would
be to have a historical database of the measures collected and use it to refine the
thresholds defined to support the interpretation. This scenario requires a long-term
research. In any case, a common sense in literature is that two kinds of validation are
necessary for measurements (Srinivasan and Devi, 2014): theoretical and empirical.

Theoretical validation aims to confirm that the measurement does not violate any
necessary properties of the elements of measurement (Srinivasan and Devi, 2014). To
that end, a theory of definition of measures must be applied. We have used the theory
of measures proposed in (Kitchenham et al., 1995), (Fenton and Pfleeger, 1997) and

2 For instance, for code in java (https://www.spinellis.gr/ sw/ckjm/;
https://github.com/mauricioaniche/ck; https://www.sourcemeter.com); in C/C++, C#
and Python (https://www.sourcemeter.com)).

87

INFORSID 2020

(ISO/IEC 25000, 2007). In general, the main theoretical items from all these theories
are the following: the entity to be measured, the attribute (also called “property to
quantify” in (ISO/IEC 25000 series)), the scale type, and a measurement unit.
Kitchenham et al. (1995) defend that it is also important to consider the adequation of
the instrument and the adoption of a measurement protocol. (Srinivasan and Devi,
2014) also shows that mathematical properties may be assured. In any way, the main
idea is to assure that we followed a theory of measurement while defining the
measures. Table 2 shows a simple way of presenting the theoretical validation, by
explicitly defining all elements of the measures (examples used in this paper). In the
same way, Cheikhi et al. (2014) presents a theoretical validation of traditional well-
known measure for object-orient systems.

Table 1. Example of specification of measurements

Name Description Measurement function Interpretation Evaluation
Method

Adaptation
Correctness

(Carvalho et
al., 2018)

Does the
adaptation
occur
correctly in
the current
context of
the user?

! =
#∑ %&

'&
(
)*+ , ∗ 100

0
N=Number of different
adaptations
Aj =Number of correctly
performed adaptations j
Bj =Number of performed
adaptations j

The closer to
100%, the better.

Interaction
log and

Third party
observation

Overall
density (for
graphical
user
interface)

(Adapted
from (Assila
et al.,
2016))

It measures
the
percentage
of display
used to
present all
information.

X= Used space
 Total space
 of an interface

0.0 < X < 1.0
The closer to 0
the better. or
Acceptable: for
values ϵ]0%,X]
Unacceptable: for
values ϵ]X;1]
X in literature is
usually 0.25-0.3

Coded
function3

The empirical validation aims to confirm that a measure has the desired predictive

power for predicting or evaluating the variable of interest (Antinyan et al., 2016).
According to (Srinivasan and Devi, 2014), three types of empirical validations are:
surveys, case studies and experiments. Preferably, case studies, and experiments
should be performed in a variety of application domains.

3 This function in general calculate the total area of all the graphical components displayed in
the interface against the overall area of the interface.

88

INFORSID 2020

Table 2. Example of theoretical elements of a measurement

Measure Base
measure

Entity Attribute Scale Unit

Adap-
tation
Correct-
ness

Number of
different
adaptations

Running
system

Adaptation Types
(e.g., adaptation
occurred by battery,
adaptation occurred
by location)

Ratio Adap-
tation

Number of
correctly
performed
adaptations

Running
system

Correctly performed
adaptations

Ratio Adap-
tation

Number of
performed
adaptations

Running
system

Performed
adaptations

Ratio Adap-
tation

Overall
density

Used space
of an
interface

GUI
compone
nts
(labels,
textfields,
images,
etc.)

components’ height
components’ width

Ratio Pixel

Total space
of an
interface

GUI height
width

Ration Pixel

We have been using the action research method proposed by Antinyan et al. (2016)

(Figure 5). In general, the measures are selected, calculated, evaluated, and redefined
based on the evaluation until they are perceived to be good measures. To that end, the
designer of the measurement (who defined the measures) and a reference group (a
group of practitioners who work closely with the artifacts that are to be measured)
work together during the cycle of validation.

The empirical evaluation should start with the definition of the research protocol
(for a case study or experiment) to be applied. Classical elements such as subjects,
time and environment for the study, and data collection methods should be clearly
described. After the execution of the case study/experiment and the data collection,
the designer presents the results for a reference group, and they brainstorm together
to understand how effectively the selected measure can assess the variable of interest
(Antinyan et al., 2016). The aim is to evaluate if a given measure is effective or not
and to check with the reference group whether the measurement results match the
current state of the application (that means, the results correspond to what they know
about the entity been evaluated). As consequence, either the reference group agrees
with the results achieved or disagrees, indicating possible changes to be made. All
agreements, disagreements, and reasons should be registered in a document that will
be used for the measurement improvement. Then, a new cycle of evaluation is
performed. From our experience, typical suggestions from the reference group are the

89

INFORSID 2020

following: the modification of thresholds, modification of interpretation procedures
and improvement of collect procedures (for instance, redefinition of questionnaires,
and inclusion of new facilities in the automated tools).

Figure 5. Action research cycle for validation of measures (Antinyan et al., 2016).

From our experience, we observed that after some action research cycles, we can
obtain more stable thresholds for future interpretations. To deal with the complexity
of definition of experimental protocols, we suggest the application of short cycles of
evaluation with simple protocols, that can be evolved after each cycle.

4. Conclusion

This paper presented a set of practices to be applied while defining measures.
These practices can be applied with any measurement approach while defining the
measurement goal and measures, and proceeding the measure evaluation.

We can summarize the defined practices drawing the following principles: (i)
follow a measurement approach; (ii) use a clear template for the measurement goal
definition; (iii) consider the entity to be measured as the base element for
measurement definition (we recall that we measure attributes of entities); (iv) look for
measures already defined in literature even if not formalize is better than start from
scratch; (v) include experts (developers of the kind of applications, managers,
technical team, etc.) in the definition and the validation of the measures; (vi) formalize
measurements by defining the measure name, description, measurement function,
method, unit of measurement, etc.; (vii) automatize as much as possible (to collect the
data for the base measures); (viii) apply and validate measurements.

We consider that the practices presented in this work can be directly applied to
new projects and we hope that they can motivate the measurement definition and
dissemination for new kinds of software system.

Acknowledgements

We strongly thank all co-authors of papers listed in this article.

90

INFORSID 2020

References

Antinyan V., Staron M., Sandberg A. (2016). Validating Software Measures Using Action
Research - A Method and Industrial Experiences, 17th International Conference on
Enterprise Information Systems, vol. 2, p. 15–27.

Assila A., Oliveira K., Ezzedine H. (2016). Integration of Subjective and Objective Usability
Evaluation based on ISO/IEC 15939: a Case Study for Traffic Supervision Systems.
International Journal of Human-Computer Interaction, 32 (12), p. 931-955.

Basili, V., Rombach, H. (1994). Goal Question Metric Paradigm, Encyclopedia of Software
Engineering. Encyclopedia of Software Engineering – 2.

Bellini C.G., Pereira R.D.C.D.F., Becker J.L. (2008). Measurement in software engineering
from the roadmap to the crossroads. International Journal of Software Engineering and
Knowledge, 18(1), p. 37–64.

Briand L.C, Morasca S., Basili V. (2002). An Operational Process for Goal-Driven Definition
of Measures. IEEE Transactions on Software Engineering, vol. 28, no. 12, p. 1106-1125.

Carvalho R., Andrade R., Oliveira K. (2018). AQUArIUM - A Suite of Software Measures for
HCI Quality Evaluation of Ubiquitous Mobile Applications. Journal of Systems and
Software, vol. 136, p. 101-136.

Carvalho R., Andrade R., Oliveira K., Santos I., Bezerra C. (2017). Quality characteristics and
measures for human-computer interaction evaluation in ubiquitous systems. Software
Quality Journal, 25(3), p. 743-795

Cheikhi, L., Al-Qutaish, R.E., Idri. A., Sellami, A. (2014) Chidamber and Kemerer Object-
Oriented Measures: Analysis of their Design from the Metrology Perspective, International
Journal of Software Engineering and Its Applications, vol.8, no.2, p. 359-374.

Dupuy-Chessa S., Oliveira K., Si-Said cherfi S. (2014). Qualité de Modèles : retour
d'expérience. XXXIIème INFORSID, p. 363-378.

Evers V., Cramer H., Van Someren M., Wielinga, B. (2010). Interacting with adaptive systems.
Interactive collaborative information systems, p. 299–325.

Fenton, N., Pfleeger, S. Software Metrics A Rigorous & Practical Approach, 2nd. Ed., PWS
Publishing Company, 1997.

Gabillon Y., Lepreux S., Oliveira K. (2013) Towards ergonomic User Interface composition: a
study about information density criterion. 15th International Conference on Human-
Computer Interaction, p. 211-220.

Gómez O., Oktaba H., Piattini M., García, F. (2008). A systematic review measurement in
software engineering: state-of-the-art in measures. ICSOFT, LNCS 5007, p. 165–176.

Hall T., Beecham S., Bowes D., Gray D., Counsell S. (2011) A Systematic Literature Review
on Fault Prediction Performance in Software Engineering. IEEE Transactions on Software
Engineering, 38(6), p. 1276-1304.

ISO/IEC 15939. System and Software Engineering – Measurement Process, 2nd edition, 2007.

ISO/IEC 25000. (2014) Systems and software engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE).

ISO/IEC 25010. (2011) -SQuaRE – System and Software Quality Models.

ISO/IEC 25022. SQuaRE) — Measurement of quality in use, July 2012.

91

INFORSID 2020

ISO/IEC 9126. Software engineering - Product quality - Part 1: Quality model, 2001.

Jafari S., Mtenzi F., O’Driscoll C., Fitzpatrick R., O’Shea, B. (2011). Measuring privacy in
ubiquitous computing applications. International Journal of Digital Society, 2(3), p. 547–
550.

Kitchenham, B., Pfleeger, S.L., Fenton, N., 1995. Towards a framework for software
measurement validation, IEEE Transactions on Software Engineering, pp. 929–944.

Lee, J., & Yun, M. H. (2012). Usability assessment for ubiquitous services: Quantification of
the interactivity in inter-personal services. IEEE international conference on management
of innovation & technology.

Lima S., Lima,F., Oliveira K. M. (2009) Evaluating the Accessibility of Websites to Define
Indicators in Service Level Agreements, 11th International Conference on Enterprise
Information Systems, p. 858-869.

McGarry J, Card D, Jones C, Layman B, Clark E, Dean J, Hall F. (2002) Practical Software
Measurement: objective information for decision makers. 1st ed. Addison-Wesley: Boston.

Monteiro L., Oliveira K. (2010). Defining a catalog of indicators to support process
performance analysis. Journal of Software Maintenance and Evolution: Research and
Practice, 23 (6), p. 395-422.

Nuñez-Varela, A.S., Pérez-Gonzalez, H.G., Martínez-Perez, F.E., Soubervielle-Montalvo C.
(2017) Source code metrics: A systematic mapping study, Information and Software
Technology, vol. 128, p. 164-197.

Oliveira K., Thion V., Dupuy-Chessa S., Gervais M.-P., Si-Said cherfi S., Kolski
C. (2012). Limites de l'évaluation d'un système d'information : une analyse fondée sur
l'expérience pratique. Actes XXXème Congrès INFORSID, p. 411-427.

Park R.E., Goethert W.B. e Florac W.A. (1996). Goal Driven Software Measurement – a
Guidebook, CMU/SEI-96-BH-002, Software Engineering Institute.

Paschou M., Sakkopoulos E., Sourla E., Tsakalidis, A.(2013). Health Internet of Things:
Metrics and methods for efficient data transfer. Information and Software Technology, 34,
p. 189-199.

Petersen, K., Vakkalanka, S., & Kuzniarz, L. (2015). Guidelines for conducting systematic
mapping studies in software engineering: An update. Information and Software
Technology, vol. 64, p. 1-18.

Ramos C. S., Oliveira K. M., Anquetil, N. (2004). Legacy Software Evaluation Model for
Outsourced Maintainer. 8th IEEE European Conference on Software Maintenance and
Reengineering, p. 48-57.

Solingen, R. van, Berghout, E. (1999). The Goal/Question/Metric Method: A practical guide
for quality improvement of software development. McGraw-Hill.

Srinivasan, K.P., Devi, T. (2014). Software Metrics Validation Methodologies in Software
Engineering. Journal of Software Engineering and Applications, vol. 5, p. 87–102.

Tahir T., Rasoola G., Gencelb C., (2016). A systematic literature review on software
measurement programs. Information and Software Technology, 73, p. 101–121.

Wu, C. L., & Fu, L. C. (2012). Design and realization of a framework for human–system
interaction in smart homes. IEEE Transactions on Systems, Man, and Cybernetics—Part
A: Systems and Humans, 42(1), p. 15–31.

92

INFORSID 2020

